Arundo donax
Scientific classification edit
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Genus: Arundo
A. donax
Binomial name
Arundo donax
    • Aira bengalensis (Retz.) J.F.Gmel.
    • Arundo aegyptia Delile
    • Arundo aegyptiaca E.Vilm.
    • Arundo bambusifolia Hook.f.
    • Arundo bengalensis Retz.
    • Arundo bifaria Retz.
    • Arundo coleotricha (Hack.) Honda
    • Arundo donax var. angustifolia Döll
    • Arundo donax var. lanceolata Döll
    • Arundo donax var. versicolor (Mill.) Stokes
    • Arundo donax f. versicolor (Mill.) Beetle
    • Arundo glauca Bubani
    • Arundo latifolia Salisb.
    • Arundo sativa Lam.
    • Arundo scriptoria L.
    • Arundo triflora Roxb.
    • Arundo versicolor Mill.
    • Cynodon donax (L.) Raspail
    • Donax arundinaceus P.Beauv.
    • Donax bengalensis (Retz.) P.Beauv.
    • Donax donax (L.) Asch. & Graebn.
    • Donax sativus C.Presl
    • Donax versicolor (Mill.) P.Beauv.
    • Scolochloa arundinacea (P.Beauv.) Mert. & W.D.J.Koch
    • Scolochloa donax (L.) Gaudin

Arundo donax is a tall perennial cane. It is one of several so-called reed species. It has several common names including giant cane, elephant grass, carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed.

Arundo donax grows in damp soils, either fresh or moderately saline, and is native to the Greater Middle East.[3][4] It has been widely planted and naturalised in the mild temperate, subtropical and tropical regions of both hemispheres, especially in the Mediterranean, California, the western Pacific and the Caribbean.[5][3][4][6][7]It forms dense stands on disturbed sites, sand dunes, in wetlands and riparian habitats.

Arundo donax


Arundo donax generally grows to 6 metres (20 ft) in height, or in ideal conditions can exceed 10 metres (33 ft). The hollow stems are 2 to 3 centimetres (0.79 to 1.18 in) in diameter. The grey-green swordlike leaves are alternate, 30 to 60 centimetres (12 to 24 in) long and 2 to 6 centimetres (0.79 to 2.36 in) wide with a tapered tip, and have a hairy tuft at the base. Overall, the plant resembles an outsize common reed (Phragmites australis) or a bamboo (subfamily Bambusoideae).

Arundo donax flowers in late summer, bearing upright, feathery plumes 40 to 60 centimetres (16 to 24 in) long, that are usually seedless or with seeds that are rarely fertile.[8] Instead, it mostly reproduces vegetatively by tough, fibrous underground rhizomes that form knotty, spreading mats which penetrate deep into the soil, up to 1 metre (3.3 ft) deep (Alden et al., 1998; Mackenzie, 2004). Stem and rhizome pieces less than 5 centimetres (2.0 in) long and containing a single node could sprout readily under a variety of conditions (Boose and Holt, 1999). This vegetative propagation appears well adapted to floods, which may break up individual A. donax clumps, spreading the pieces, which may sprout and colonise downstream (Mackenzie 2004).

Phyllostachys aurea (golden bamboo) and Arundo donax
Arundo donax
Arundo donax
Arundo donax


Arundo donax is a tall, perennial C3 grass in the subfamily Arundinoideae. Stems produced during the first growing season are unbranched and photosynthetic. In the Mediterranean, where a temperate climate is characterized by warm and dry summer and mild winter, new shoots of giant reed emerge around March, growing rapidly in June and July and producing stems and leaves. From late July the lower leaves start to dry, depending on seasonal temperature patterns. Drying accelerates during autumn when anthesis occurs from the beginning of October to the end of November. In this phenological stage moisture content falls significantly. In the low temperatures of winter giant reed stops its growth; regrowth occurs in springtime. Giant reed behaves as an annual in Central Europe where soil temperatures are low, due to poor freeze tolerance of the rhizomes.

The base growth temperature reported for giant reed is 7 °C,[9] with a maximum temperature of 30 °C. It has a high photosynthetic capacity, associated with absence of light saturation. Carbon dioxide exchange rates are high compared to other C3 and C4 species; maximum CO2 uptake ranged from 19.8 to 36.7 µmol m−2 s−1 under natural conditions, depending on irradiance and leaf age. Carbon dioxide exchange is regulated by leaf conductance.[10]

Genetic background

In most areas where giant reed grows (Mediterranean area and US), viable seeds are not produced.[11] It is reported that sterility of giant reed results from failure of the megaspore mother cell to divide.[12] This sterility, which drastically limits genetic variability, is an obstacle for breeding programs which aim to increase the productivity and biomass quality for energy conversion.[13] A total of 185 clones of A. donax were collected from California to South Carolina and genetically fingerprinted with the SRAP and TE-based markers.[14] Giant reed exhibited no molecular genetic variation despite the wide genomic coverage of the markers used in this study. The molecular data strongly point to a single genetic clone of A. donax in the United States, although multiple introductions of this plant into the United States have been documented. Another study conducted in the Mediterranean area sampled giant reed from 80 different sites, and demonstrated low gene diversity in this region as well. Results indicate the occurrence of post-meiotic alterations in the ovule and pollen developmental pathway. AFLP data support a monophyletic origin of giant reed and suggest that it originated in Asia, spreading from there into the Mediterranean Basin.


Giant reed is adapted to a wide variety of ecological conditions, but is generally associated with riparian and wetland systems. It is distributed across the southern United States from Maryland to California. Plants can grow in a variety of soils, from heavy clays to loose sands and gravelly soils, but prefer wet drained soils, where they produce dense monotypic stands. Giant reed was found to grow rapidly in soil contaminated with arsenic, cadmium and lead; limited metal translocation from roots to shoots accounted for its strong tolerance to heavy metals.[15] The same study determined that accumulations of As, Cd and Pb were high in roots but low in shoots, where SEM images showed thick and homogeneous stem tissue characteristics. In Pakistan, where the presence of arsenic has made risky the use of ground waters as a source of drinking water, a research study highlighted the phytoremediation potential of A. donax when grown in hydroponics cultures containing arsenic concentrations up to 1000 µg L−1.[16] Giant reed was able to translocate the metals absorbed into the shoot and to accumulate metals in the stalk and leaves above the root concentration, showing no toxic effects at As concentrations up to 600 µg l−1. Furthermore, the plant is not consumed by herbivores, a positive trait in phytoremediation plants.

Carbon sequestration

An increased environmental concern is the health of soil system as one of the main factors affecting quality and productivity of agroecosystems. Around the world, several regions are subjected to a decline of fertility due to an increasing degradation of soils, loss of organic matter and increasing desertification.[17] Recently research was carried out to evaluate, in the same pedological and climatic conditions, the impact of three long-term (14 years) agricultural systems, continuous giant reed, natural grassland, and cropping sequence, on the organic-matter characteristics and microbial biomass size in soil.[18] The study pointed out that a long term Giant reed cropping system, characterized by low tillage intensity, positively affect the amount and quality of soil organic matter. Arundo donax showed greater values than tilled management system for total soil organic carbon, light fraction carbon, dissolved organic carbon, and microbial biomass carbon. Regarding the humification parameters, there were noticed any statistically differences between giant reed and a cropping sequence (cereals-legumes cultivated conventionally).

Invasiveness and management

Arundo is a highly invasive plant in southwestern North American rivers, and its promotion as a biofuel in other regions is of great concern to environmental scientists and land managers.[19]Arundo donax was introduced from the Mediterranean to California in the 1820s for roofing material and erosion control in drainage canals in the Los Angeles area (Bell 1997; Mackenzie 2004). Through spread and subsequent plantings as an ornamental plant, and for use as reeds in woodwind instruments, it has become naturalised throughout warm coastal freshwaters of North America, and its range continues to spread.

It has been planted widely through South America and Australasia (Boose and Holt 1999; Bell 1997) and in New Zealand it is listed under the National Pest Plant Accord as an "unwanted organism".[20] Despite its invasive characteristics in regions around the world where it is not native, Arundo is being promoted by the energy industry as a bio-fuel crop. Some of the regions, such as the southeastern United States have natural disturbances, such as hurricanes and floods, that could widely disperse this plant.

It is among the fastest-growing terrestrial plants in the world (nearly 10 centimetres (3.9 in) / day; Dudley, 2000). To present knowledge, Arundo does not provide any food sources or nesting habitats for wildlife. Replacement of native plant communities by Arundo results in low-quality habitat and altered ecosystem functioning (Bell 1997; Mackenzie 2004). For example, it damages California's riparian ecosystems by outcompeting native species, such as willows, for water. A. donax stems and leaves contain a variety of harmful chemicals, including silica and various alkaloids, which protect it from most insect herbivores and deter wildlife from feeding on it (Bell 1997; Miles et al. 1993; Mackenzie 2004). Grazing animals such as cattle, sheep, and goats may have some effect on it, but are unlikely to be useful in keeping it under control (Dudley 2000).

Arundo donax appears to be highly adapted to fires. It is highly flammable throughout the year, and during the drier months of the year (July to October), it can increase the probability, intensity, and spread of wildfires through the riparian environment, changing the communities from flood-defined to fire-defined communities.[21] After fires, A. donax rhizomes can resprout quickly, outgrowing native plants, which can result in large stands of A. donax along riparian corridors (Bell 1997; Scott 1994). Fire events thus push the system further toward mono-specific stands of A. donax.

A waterside plant community dominated by A. donax may also have reduced canopy shading of the in-stream habitat, which may result in increased water temperatures. This may lead to decreased oxygen concentrations and lower diversity of aquatic animals (Bell 1997).

As the impact of Arundo donax increased in the environment and native species various efforts have been taken to reduce its population. It has few natural enemies in its introduced range. Several Mediterranean insects have been imported into the United States as biological control agents (Bell, 1997; Miles et al. 1993; Mackenzie 2004, Goolsby 2007). The Arundo wasp, Tetramesa romana, the Arundo scale insect, Rhizaspidiotus donacis, and the Arundo fly, Cryptonevra are known to have some effect in damaging the plant. Tetramesa romana and more recently Rhizaspidiotus donacisis were registered in the US as biological control agents.

Other remedies like using mechanical force have also been employed, since outside its native range Arundo donax doesn't reproduce by seeds, so removing its root structure can be effective at controlling it. Also preventing it from getting sunlight will deplete the plant of its resources and eventually kill it (Mackenzie 2004). Systemic herbicides and glyphosate are also used as chemical remedies.

The US Department of Homeland Security considers this plant invasive and in 2007 began researching biological controls.[22] In 2015, Texas Senator Carlos Uresti passed legislation to create a program to eradicate Arundo donax using herbicides and the Arundo wasp.[23]

In New Zealand's northernmost region, Arundo donax crowds out native plants,[24] reduces wildlife habitat, contributes to higher fire frequency and intensity, and modifies river hydrology.[25]


Energy crop

Energy crops are plants which are produced with the express purpose of using their biomass energetically [26] and at the same time reduce carbon dioxide emission. Biofuels derived from lignocellulosic plant material represent an important renewable energy alternative to transportation fossil fuels.[27]Perennial rhizomatous grasses display several positive attributes as energy crops because of their high productivity, low (no) demand for nutrient inputs consequent to the recycling of nutrients by their rhizomes, exceptional soil carbon sequestration - 4X switchgrass, multiple products, adaptation to saline soils and saline water, and resistance to biotic and abiotic stresses.

Giant reed is one of the most promising crops for energy production in the Mediterranean climate of Europe and Africa, where it has shown advantages as an indigenous crop (already adapted to the environment), durable yields, and resistant to long drought periods. Several field studies have highlighted the beneficial effect of giant reed crop on the environment due to its minimal soil tillage, fertilizer and pesticide needs. Furthermore, it offers protection against soil erosion,[28] one of the most important land degradation processes in Mediterranean and US environments. A. donax bioenergy feedstock has an impressive potential for several conversion processes. Dried biomass has a direct combustion high heating value of 3,400 kJ/kg (8,000 BTU/lb). In Italy, Arundo donax was used in one instance from 1937 to 1962 on a large-scale industrial basis for paper and dissolving pulp. This interest was stimulated primarily by the desire of the dictatorship, just before World War II, to be independent of foreign sources of textile fibres and the desire for an export product.[29] According to historical records made by Snia Viscosa, giant reed was established on 6 300 ha in Torviscosa (Udine), reaching the average annual production of 35 t ha−1.[30] Today several screening studies on energy crops have been carried out by several universities in the US as well as in EU to evaluate and identify best management practices for maximizing biomass yields and assess environmental impacts.


Establishment is a critical point of cultivation. Stem and rhizome have a great ability to sprout after removal from mother plant and both can be used for clonal propagation. The use of rhizomes were found to be the better propagation method for this species, achieving better survival rate.[31] In this field study, it was noticed how the lowest density (12 500 rhizomes ha−1) resulted in taller and thicker plants compared to denser plantation (25 000 rhizomes ha−1). Seedbed preparation is conducted in the spring, immediately before planting, by a pass with a double-disk harrowing and a pass with a field cultivator. Giant reed has the possibility of adopting low plant density. The rhizomes were planted at 10–20 centimetres (3.9–7.9 in) of soil depth, with a minimum plant density of 10 000 plants per ha), while mature stems, with two or more nodes, can be planted 10–15 centimetres (3.9–5.9 in) deep. In order to ensure good root stand and adequate contact with the soil, sufficient moisture is needed immediately after planting. Pre-plant fertilizer is distributed according to the initial soil fertility, but usually an application of P at a rate of 80–100 kilograms (180–220 lb) ha−1 is applied.

A. donax maintains a high productive aptitude without irrigation under semi-arid climate conditions. In Southern Italy, a trial was carried out testing the yields performance of 39 genotypes, and an average yields of 22.1 t ha−1 dry matter in the second year were reached,[32] a comparable result with others results obtained in Spain (22.5 t ha−1) as well as in South Greece (19.0 t ha−1). Several reports underlined that it is more economical to grow giant reed under moderate irrigation.

In order to evaluate different management practices, nitrogen fertilizer and input demand was evaluated in a 6-year field study conducted at the University of Pisa. Fertilizer enhanced the productive capacity in the initial years, but as the years go by and as the radical apparatus progressively deepens, the differences due to fertilizer decrease until disappearing. Harvest time and plant density were found to not affect the biomass yields.

Due to its high growth rate and superior resource-capture capacity (light, water and nutrients), A. donax is not affected by weed competition from the second year. An application of post-emergence treatment is usually recommended. Giant reed has few known disease or insect pest, but in intensive cultivation, no pesticides are used.

To remove giant reed at the end of the crop cycle, there are mainly two methods: mechanical or chemical.[33] An excavator can be useful to dig out the rhizomes or alternatively a single late-season application of 3% glyphosate onto the foliar mass is efficient and effective with least hazardous to biota.[34] Glyphosate was selected as the most appropriate product for specific considerations on efficacy, environmental safety, soil residual activity, operator safety, application timing, and cost-effectiveness. However, glyphosate is only effective in fall when plants are actively transporting nutrients to the root zone, and multiple retreatments are usually needed. Other herbicides registered for aquatic use can be very effective in controlling Arundo at other times of the year.


Arundo donax is a strong candidate for use as a renewable biofuel source because of its fast growth rate and its ability to grow in different soil types and climatic conditions. A. donax will produce an average of three kilograms of biomass per square metre (12 tons per acre/year) once established.[35] The total energy input needed for the growing of one ha increases from not fertilised (4 GJ ha−1) to fertilised (18 GJ ha−1) crops, while the maximum energy yield output was 496 GJ ha−1, obtained with 20,000 plants per ha and fertilisation; fertilisation brought a 15% increase in biomass. The biomass calorific mean value (technically, the calorific value obtained from combustion of biomass sample in an adiabatic system) of Giant reed is about 17 MJ kg−1 dry matter regardless of fertilizer usage.[35]

Studies in the European Union have identified A. donax as the most productive and lowest impact of all energy biomass crops (see FAIR REPORT E.U. 2004).

Arundo donax's ability to grow for 20 to 25 years without replanting is also significant.

In the UK it is considered suitable for planting in and around water areas.[36]

Arundo donax grown in Australia was demonstrated as potential feedstock for producing advanced biofuels through hydrothermal liquefaction.[37]

Outside its native range, the interest as a biofuel crop needs to be balanced against its major invasive potential.


Studies have found this plant to be rich in active tryptamine compounds, but there are more indications of the plants in India having these compounds than in the United States.[38]Toxins such as bufotenidine[39] and gramine[38] have also been found.

The dried rhizome with the stem removed has been found to contain 0.0057% DMT, 0.026% bufotenine, 0.0023% 5-MeO-MMT.[38] The flowers are also known to have DMT and the 5-methoxylated N-demethylated analogue, also 5-MeO-NMT. The quite toxic quaternary methylated salt of DMT, bufotenidine,[38] has been found in the flowers, and the cyclic dehydrobufotenidine has been found in the roots.[citation needed]A. donax is also known to release volatile organic compounds (VOCs), mainly isoprene.[40]


Arundo donax has been cultivated throughout Asia, southern Europe, northern Africa, and the Middle East for thousands of years. Ancient Egyptians wrapped their dead in the leaves. The canes contain silica, perhaps the reason for their durability, and have been used to make fishing rods, and walking sticks.[citation needed] Its stiff stems are also used as support for climbing plants or for vines.[citation needed]

This plant may have been used in combination with harmal (Peganum harmala) to create a brew similar to the South American ayahuasca, and may trace its roots to the Soma of lore.[41]


Mature reeds are used in construction as raw material, given their excellent properties and tubular shape. Its resemblance to bamboo permits their combination in buildings, though Arundo is more flexible.

In rural regions of Spain, for centuries there has existed a technique named cañizo, consisting of rectangles of approximately 2 by 1 meters of woven reeds to which clay or plaster could be added. A properly insulated cañizo in a roof could keep its mechanical properties for over 60 years. Its high silicon content allows the cane to keep its qualities through time. Its low weight, flexibility, good adherence of the cañizo fabric and low price of the raw material have been the main reasons that made this technique possible to our days. However, in the last decades, the rural migration from the countryside to urban centres and the extensive exploitation of land has substituted traditional crops. This has threatened very seriously its continuity.

Recently, initiatives are being taken to recover the use of this material, combining ancient techniques from southern Iraq mudhif (reed houses) with new materials.

Diverse associations and collectives, such as CanyaViva, are pioneering in the research in combination with Spanish universities.

Musical instruments

Ancient Greeks used cane to make flutes, known as kalamaulos, from kalamos ("cane") + aulos ("flute"). At the time, the best cane for flutes came from the banks of river Cephissus, in Attica, Greece. Several kalamauloi tuned differently and tied together, made a syrinx. A. donax is still the principal source material of reed makers for clarinets, saxophones, oboes, bassoons, bagpipes, and other woodwind instruments.[42] The Var country in southern France contains the best-known supply of instrument reeds.

Additionally, giant reed has been used to make flutes for over 5,000 years. The pan pipes consist of ten or more pipes made from the cane. Also, the ancient end-blown flute ney (a) is made from the same reeds.

Other uses

When young, A. donax is readily browsed by ruminants, but it becomes unpalatable when maturing.[43]A. donax has also been used in constructed wetlands for wastewater treatment.[44]



  1. ^ Lansdown, R.V. (2013). "Arundo donax". The IUCN Red List of Threatened Species. IUCN. 208. e.T164340A1043245. doi:10.2305/IUCN.UK.2013-1.RLTS.T164340A1043245.en.
  2. ^ "Arundo donax L." Plants of the World Online. Board of Trustees of the Royal Botanic Gardens, Kew. 2017. Retrieved 12 July 2020.
  3. ^ a b CABI, 2020. Arundo donax (giant reed). In: Invasive Species Compendium. Wallingford, UK: CAB International.
  4. ^ a b Global Invasive Species Database (2020) Species profile: Arundo donax. Downloaded from on 12-01-2020.
  5. ^ Perdue, R.E. Arundo donax—Source of musical reeds and industrial cellulose. Econ Bot 12, 368–404 (1958).
  6. ^ "Catalogue of Life 2008".
  7. ^ Lambert, A.M., Dudley, T.L. and Saltonstall, K., 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Science and Management, 3(4), pp.489-494.
  8. ^ (Johnson et al. 2006)
  9. ^ Spencer, D.F., Ksander, G.G., 2006. Estimate Arundo donax ramet recruitment using degree-day based equation. Aquat. Bot. 85, 282–288.
  10. ^ Rossa B, TuAers AV, Naidoo G, von Willert DJ. 1998. Arundo donax L. (Poaceae)—a C3 species with unusually high photosynthetic capacity. Botanica Acta. 111:216–21.
  11. ^ Saltonstall, K., Lambert, A., Meyerson, L.A., 2010. Genetics and reproduction of common (Phragmites australis) and giant reed (Arundo donax). Invasive Plant Sci. Manag. 3, 495-505.
  12. ^ Bhanwra R.K., Choda S.P., Kumar S. 1982. Comparative embryology of some grasses. Proceedings of the Indian National Science Academy, 48, 152–162.
  13. ^ Mariani C., R. Cabrini, A. Danin, P. Piffanelli, A. Fricano, S. Gomarasca, M. Dicandilo, F. Grassi and C. Soave. 2010 Origin, diffusion and reproduction of the giant reed (Arundo donax L.) a promising weedy energy crop. Annals of Applied Biology. 157: 191–202.
  14. ^ Ahmad R., Liow P.S., Spencer D.F., Jasieniuk M. 2008. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquatic Botany. 88: 113–120.
  15. ^ Guo, Z.H., and Miao, X.F., 2010. Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J. Cent. South Univ. Technol. 17:770−777.
  16. ^ Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M., Azim, M.R. 2010. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol. 101:5815-9.
  17. ^ Albaladejo, J., and E. Díaz. 1990. Degradation and regeneration of the soil in a Mediterranean Spanish coastline: Trials in Lucdeme project (Degradación y regeneración del suelo en el litoral mediterráneo español: Experiencias en el proyecto LUCDEME). In Soil degradation and rehabilitation in Mediterranean environmental conditions (Degradación y regeneración del suelo en condiciones ambientales medíterráneas), ed. J. Albaladejo et al., 191–214. Madrid: CSIC.
  18. ^ Riffaldi, R., Saviozzi, A., Cardelli, A., Bulleri, F., and Angelini, L. 2010. Comparison of Soil Organic-Matter Characteristics under the Energy Crop Giant Reed, Cropping Sequence and Natural Grass. Communications in Soil Science and Plant Analysis, 41:173–180.
  19. ^ Lambert, A.M., Dudley, T.L., Saltonstall, K., 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Sci. Manag. 3, 489-494.
  20. ^ "Giant reed". Biosecurity New Zealand. Retrieved 2009-01-13.
  21. ^ Coffman, G., Ambrose, R., Rundel, P., 2010. Wildfire promotes dominance of invasive giant reed (Arundo donax) in riparian ecosystems. Biol. Invasions 12, 2723-2734.
  22. ^ "Razing Cane". 2009-07-07.
  23. ^ Aguilar, Julian (2016-04-05). "New Carrizo Eradication Effort Reignites Old Debate". Texas Tribune.
  24. ^ "New Zealand imports insects to fight plant invader". BBC News. 2017-01-19. Retrieved 2017-01-21.
  25. ^ McAllister (2011). "Ecological impact of invasive Arundo donax populations in New Zealand: a 10 year study". Journal of Ecology. 53 (9): 62–67.
  26. ^ Lewandowski I, Scurlock JMO, Lindvall E, Christou M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy. 25:335–61.
  27. ^ Sanderson K. 2006. US biofuels: A field in ferment. Nature 444: 673-676.
  28. ^ Heaton, E., Voigt, T., and Long, S.P. 2004. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy. 27:21–30.
  29. ^ Perdue, R.E. Arundo donax—Source of musical reeds and industrial cellulose. Econ Bot 12, 368–404 (1958).
  30. ^ Facchini 1941 La canna gentile per la Produzione Della cellulose mobile. L’impresa agricolo-Industriale di Torviscosa
  31. ^ Christou M, Mardikis M, Alexopoulou E. 2000. Propagation material and plant density effects on the Arundo donax yields. In: Biomass for energy and industry: proceeding of the First World Conference, Sevilla, Spain, June 5–9, 2000. p. 1622–8.
  32. ^ Cosentino et al. 2006 First results on evaluation of Arundo donax (L.) clones collected in Southern Italy
  33. ^ Jackson 1998, Chemical control of giant reed (Arundo donax) and salt cedar (Tamarix ramosissima).
  34. ^ Spencer, D.F., Tan, W., Liow, P., Ksander, G., Whitehand, L.C., Weaver, S., Olson, J., Newhauser, M., 2008. Evaluation of glyphosate for managing giant reed (Arundo donax). InvasivePlantSci.Manage.1,248–254.
  35. ^ a b Angelini, L.G., Ceccarinia, L., and Bonarib E.; European Journal of Agronomy, 22, 2005, pp 375-389
  36. ^ BS 7370-5 Recommendations for maintenance of water areas
  37. ^ Kosinkova, Jana; Ramirez, Jerome; Jablonsky, Michal; Ristovski, Zoran; Brown, Richard; Rainey, Thomas (24 May 2017). "Energy and chemical conversion of five Australian lignocellulosic feedstocks into bio-crude through liquefaction". RSC Advances. 7 (44): 27707–27717. Bibcode:2017RSCAd...727707K. doi:10.1039/C7RA02335A.
  38. ^ a b c d Erowid Arundo Donax Info Page 1
  39. ^ Erowid Arundo Donax Info Page 3
  40. ^ Owen, S.M., Boissard, C., and Hewitt, C. N. Atmospheric Environment, 35, 2001, pp 5393–5409
  41. ^ S. Ghosal, S. K. Dutta, A. K. Sanyal, and Bhattacharya, "Arundo donax L. (Gramineae), Phytochemical and Pharmacological Evaluation," in the Journal of Medical Chemistry, vol. 12 (1969), p. 480.
  42. ^ Opperman, Kalman (1956). Handbook for making and Adjusting Single Reeds. New York, New York: Chappell & Co. p. 40.
  43. ^ Heuzé V., Tran G., Giger-Reverdin S., Lebas F., 2015. Giant reed (Arundo donax). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. Last updated on December 7, 2015, 17:39
  44. ^ Calheiros, Cristina SC, et al. "Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater." Journal of environmental management 95.1 (2012): 66-71.

General references

  1. Alden, P., F. Heath, A. Leventer, R. Keen, W. B. Zomfler, eds. 1998. National Audubon Society Field Guide to California. Knopf, New York.
  2. Bell, G. P. 1997. Ecology and Management of Arundo donax, and approaches to riparian habitat restoration in southern California. In Plant Invasions: Studies from North America and Europe, eds. J. H. Brock, M. Wade, P. Pysêk, and D. Green. pp. 103–113. Backhuys, Leiden, the Netherlands.
  3. Boose, A. B., and J. S. Holt. 1999. Environmental effects on asexual reproduction in Arundo donax. Weeds Research 39: 117-127.
  4. Dudley, T. L. 2000. Noxious wildland weeds of California: Arundo donax. In: Invasive plants of California's wildlands. C. Bossard, J. Randall, & M. Hoshovsky (eds.).
  5. Lambert, A.M., Dudley, T.L. and Saltonstall, K., 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Science and Management, 3(4), pp.489-494.
  6. Mackenzie, A. 2004. Giant Reed. In: The Weed Workers' Handbook. C. Harrington and A. Hayes (eds.)
  7. Miles, D. H., K. Tunsuwan, V. Chittawong, U. Kokpol, M. I. Choudhary, and J. Clardy. 1993. Boll weevil antifeedants from Arundo donax. Phytochemistry 34: 1277-1279.
  8. Perdue, R. E. 1958. Arundo donax – source of musical reeds and industrial cellulose. Economic Botany 12: 368-404.
  9. Scott, G. 1994. Fire threat from Arundo donax. pp. 17–18 in: November 1993 Arundo donax workshop proceedings, Jackson, N.E. P. Frandsen, S. Douthit (eds.). Ontario, CA.
  10. Tu, M., C. Hurd, and J. M. Randall. 2001. Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas. The Nature Conservancy.
  11. Excerpted from Chapter 15 of TIHKAL, 1997

External links