Erysimum cheiranthoides
Gewone steenraket bloemen.jpg
Scientific classification edit
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Brassicales
Family: Brassicaceae
Genus: Erysimum
E. cheiranthoides
Binomial name
Erysimum cheiranthoides

Cheirinia cheiranthoides

Erysimum cheiranthoides, the treacle-mustard, wormseed wallflower, or wormseed mustard is a species of Erysimum native to most of central and northern Europe and northern and central Asia.[1][2][3][4] Like other Erysimum species, E. cheiranthoides accumulates two major classes of defensive chemicals, glucosinolates and cardiac glycosides.


It is a herbaceous, annual plant similar in appearance to many other mustards, growing an erect stem 15–100 cm (5.9–39.4 in),[5] (rarely 150 cm) tall.[6] The leaves are lanceolate to elliptic, 2–11 cm long and 0.5–1 cm broad, with an entire to coarsely toothed margin. It blooms in summer, between June and August.[5][7] The flowers are bright yellow, 5–12 mm diameter, produced in an erect inflorescence. Later, it produces a slender cylindrical capsule, 1–3 cm (rarely 5 cm) long, containing several small, pale brown,[5] or dark brown seeds.[2][3][8]


It was formerly described by the Swedish botanist Carl Linnaeus in his seminal publication 'Species Plantarum' in 1753, on page 661.[9][10]

It is commonly known as treacle-mustard,[5] or wormseed wallflower.[7][6] The treacle mustard name came from the Greek word 'theriaki' meaning antidote to poisonous bites as the plant was thought to have healing properties. The name 'wormseed mustard' arose from the seeds of the plant being made into treacle, to treat intestinal worms in children.[5]


Erysimum cheiranthoides

Erysimum cheiranthoides is native to temperate areas of Europe and Asia.[4]


It is found in Asia within China (in the provinces of Heilongjiang, Jilin, Nei Monggol and Xinjiang), Japan, Korea, Mongolia and Siberia. In Eastern Europe, it is found in Belarus, Estonia, Latvia, Lithuania, Moldova and Ukraine. In middle Europe, it is found within Austria, Belgium, the Czech Republic, Germany, Hungary, the Netherlands, Poland, Slovakia and Switzerland. In Northern Europe, in Denmark, Finland, Norway, Sweden and the United Kingdom. In Southeastern Europe, within Bosnia and Herzegovina, Bulgaria, Croatia, France, Romania, Serbia and Slovenia.[1][2][3][4]

It is also widely naturalised outside of its native range,[8][11] from New Zealand, other parts of Europe,[4] to North America,[12] (including parts of Canada and Argentina (in Tierra del Fuego).[4]


It grows in disturbed areas, fields,[7] and dry stream beds.[6] It is normally found at altitudes of 0–3,000 m (0–9,843 ft) above sea level.[6]

Chemical ecology

Like other members of the genus Erysimum, E. cheiranthoides produces two major classes of chemical defenses against herbivory: glucosinolates, which are characteristic of the plant family Brassicaceae,[13] and cardiac glycosides (cardenolides), a class of chemicals produced by at least twelve different plant families.[14][15] Glucosinolates found in E. cheiranthoides include glucoiberin, glucoerucin, glucocheirolin, and glucoiberverin.[16][17] Cardenolides reported in E. cheiranthoides seeds include strophanthidin, digitoxigenin, cannogenol, erychroside, erysimoside, erycordin, cheiranthoside, glucoerysimoside, and glucodigifucoside.[18][19][20][21][22][23]

Some crucifer-specialist insect herbivores do not feed and/or oviposit readily on E. cheiranthoides. Anthocharis cardamines (orange tip butterfly), which oviposits on almost all crucifer species, avoids E. cheiranthoides.[24] Similarly, the crucifer-feeding specialist Pieries rapae (white cabbage butterfly) is deterred from feeding and oviposition on E. cheiranthoides.[25][26][27][28][29] However, another pierid species, Pieris napi oleracea (green veined white butterfly), not only is less sensitive to exogenously added cardenolides than P. rapae in oviposition assays, but also oviposits more readily on E. cheiranthoides leaves.[30][31]

In the case of P. rapae, oviposition experiments with extracts of E. cheiranthoides sprayed onto Brassica oleracea (cabbage) identified both attractants and deterrents.[26][27] Whereas 3-methylsulfinylpropyl glucosinolate and 3-methylsufonylpropyl glucosinolate stimulated oviposition,[28][31] erysimoside and erychroside in E. cheiranthoides extracts were deterrent.[29][32] In contrast, another cardiac glycoside, erycordin, was inactive in this oviposition assay. Pieris rapae tarsal sensilla respond to both glucosinolates and cardenolides, indicating that these compounds are detected on the leaf surface prior to oviposition.[33] Consistent with the deterrent effects on oviposition, cardenolides from E. cheiranthoides leaf extracts also served as feeding deterrents for P. rapae caterpillars.[29][28]

Predatory paper wasps (Polistes dominulus) required more time to consume Pieris napi (green-veined white) caterpillars that had fed on E. cheiranthoides than those that had fed on Brassica oleracea (cabbage).[34] This was ascribed to the time that it took the wasps to selectively remove the caterpillar guts, which contained plant material.

Use as a model organism

Erysimum cheiranthoides variety Elbtalaue in a growth chamber

Because Erysimum is in the family Brassicaceae, it has been proposed that many of the genetic resources that already exist for Arabidopsis thaliana (an extensively studied model organism) can be used with Erysimum to aide in genetic analysis, making this genus particularly attractive for studying the cardenolide biosynthetic pathway.[35][36]E. cheiranthoides itself is diploid and has a relatively small genome (~200 Mbp across 8 chromosomes), can be grown from seed to seed production as fast as 10 weeks, and performs well in a laboratory setting.[36][37] The genome of E. cheiranthoides variety Elbtalaue has been sequenced.[38][39] As E. cheiranthoides has many genetic similarities to A. thaliana, it is likely that techniques for genetically modifying A. thaliana and related research methods will also work for E. cheiranthoides.[36] Mutated isolates of E. cheiranthoides with altered cardiac glycoside content have been identified.[40]

Medicinal uses

Cardiac glycosides, which are abundant in E. cheiranthoides, have been used for treating heart disease and other ailments in traditional and modern medicine.[41][42][43][44][45][46] However, E. cheiranthoides is not a commonly used source of these compounds. Nevertheless, E. cheiranthoides has been used as an herbal remedy in traditional Chinese medicine.[47] European herbalists in the 16th century, used the plant as a remedy for insect and animal bites.[5] The common name wormseed wallflower comes from the use of E. cheiranthoides in treating intestinal worms.[5]


  1. ^ a b Flora Europaea: Erysimum cheiranthoides
  2. ^ a b c Blamey, M. & Grey-Wilson, C. (1989). Flora of Britain and Northern Europe. ISBN 0-340-40170-2
  3. ^ a b c Flora of China: Erysimum cheiranthoides
  4. ^ a b c d e "Taxon: Erysimum cheiranthoides L." Retrieved 21 November 2017.
  5. ^ a b c d e f g Reader's Digest Field Guide to the Wild Flowers of Britain. Reader's Digest. 1981. p. 47. ISBN 9780276002175.
  6. ^ a b c d "FNA Vol. 7 Page 535, 539". Retrieved 21 November 2017.
  7. ^ a b c "Erysimum cheiranthoides (Wormseed Wallflower)". Retrieved 21 November 2017.
  8. ^ a b Flora of NW Europe: Erysimum cheiranthoides[permanent dead link]
  9. ^ "Erysimum cheiranthoides L. is an accepted name". Retrieved 21 November 2017.
  10. ^ "Brassicaceae Erysimum cheiranthoides L." Retrieved 21 November 2017.
  11. ^ Med-Checklist: Erysimum cheiranthoides
  12. ^ USDA Plants Profile: Erysimum cheiranthoides
  13. ^ Fahey, Jed W.; Zalcmann, Amy T.; Talalay, Paul (2001). "The chemical diversity and distribution of glucosinolates and isothiocyanates among plants". Phytochemistry. 56 (1): 5–51. doi:10.1016/S0031-9422(00)00316-2. ISSN 0031-9422. PMID 11198818.
  14. ^ Agrawal, Anurag A.; Petschenka, Georg; Bingham, Robin A.; Weber, Marjorie G.; Rasmann, Sergio (2012). "Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions". New Phytologist. 194 (1): 28–45. doi:10.1111/j.1469-8137.2011.04049.x. ISSN 0028-646X. PMID 22292897.
  15. ^ Melero, Concepción; Medarde, Manuel; San Feliciano, Arturo (2000-01-21). "A Short Review on Cardiotonic Steroids and Their Aminoguanidine Analogues". Molecules. 5 (12): 51–81. doi:10.3390/50100051. ISSN 1420-3049.
  16. ^ Cole, Rosemary A. (1976). "Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae". Phytochemistry. 15 (5): 759–762. doi:10.1016/S0031-9422(00)94437-6. ISSN 0031-9422.
  17. ^ Hugentobler, U.; Renwick, J. A. A. (1995). "Effects of plant nutrition on the balance of insect relevant cardenolides and glucosinolates in Erysimum cheiranthoides". Oecologia. 102 (1): 95–101. Bibcode:1995Oecol.102...95H. doi:10.1007/bf00333315. ISSN 0029-8549. PMID 28306812. S2CID 12564977.
  18. ^ Makarevich, I. F.; Kolesnikov, D. G. (1965). "Cardenolides of the seeds ofErysimum cheiranthoides L.". Chemistry of Natural Compounds. 1 (5): 286–287. doi:10.1007/BF00563707. ISSN 1573-8388. S2CID 4813099.
  19. ^ Zhen-Huan Lei; Yahara, Shoji; Nohara, Toshihiro; Tai-Bao Shan; Jin-Zhe Xiong (1996). "Cardenolides from Erysimum cheiranthoides". Phytochemistry. 41 (4): 1187–1189. doi:10.1016/0031-9422(95)00764-4. ISSN 0031-9422. PMID 8728718.
  20. ^ Lei, Zhen-Huan; Jin, Zhe-Xion; Ma, Ying-Li; Tai, Bao-Shan; Kong, Qi; Yahara, Shoji; Nohara, Toshihiro (1998). "Cardiac glycosides from erysimum cheiranthoides". Phytochemistry. 49 (6): 1801–1803. doi:10.1016/S0031-9422(98)00264-7. ISSN 0031-9422. PMID 11711105.
  21. ^ Lei, Zhen-Huan; Yahara, Shoji; Nohara, Toshihiro; Tai, Bao-Shan; Xiong, Jin-Zhe; Ma, Ying-Li (2000). "Cardiac Glycosides form Erysimum cheiranthoides". Chemical and Pharmaceutical Bulletin. 48 (2): 290–292. doi:10.1248/cpb.48.290. ISSN 0009-2363. PMID 10705523.
  22. ^ Lei, Zhen-Huan; Kuniyasu, Akihiko; Tai, Bao-Shin; Nakayama, Hitoshi; Nohara, Toshihiro (2001). "Na+,K+-ATPase Inhibiting Activity of Cardiac Glycosides from Erysimum cheiranthoides". Planta Medica. 67 (4): 369–370. doi:10.1055/s-2001-14309. ISSN 0032-0943. PMID 11458460.
  23. ^ Lei, Zhen-Huan; Nakayama, Hitoshi; Kuniyasu, Akihiko; Tai, Bao-Shan; Nohara, Toshihiro (2002). "Cardiac Glycosides from Erysimum cheiranthoides". Chemical and Pharmaceutical Bulletin. 50 (6): 861–862. doi:10.1248/cpb.50.861. ISSN 0009-2363. PMID 12045350.
  24. ^ Wiklund, Christer; Åhrberg, Carl; Ahrberg, Carl (1978). "Host Plants, Nectar Source Plants, and Habitat Selection of Males and Females of Anthocharis cardamines (Lepidoptera)". Oikos. 31 (2): 169. doi:10.2307/3543560. ISSN 0030-1299. JSTOR 3543560.
  25. ^ Feeny, Paul (1977). "Defensive Ecology of the Cruciferae". Annals of the Missouri Botanical Garden. 64 (2): 221–234. doi:10.2307/2395334. JSTOR 2395334.
  26. ^ a b Renwick, J. A. A.; Radke, Celia D. (1987). "Chemical stimulants and deterrents regulating acceptance or rejection of crucifers by cabbage butterflies". Journal of Chemical Ecology. 13 (7): 1771–1776. doi:10.1007/bf00980217. ISSN 0098-0331. PMID 24302344. S2CID 24473740.
  27. ^ a b Renwick, J. A. A.; Radke, Celia D. (1985). "Constituents of host- and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae". Entomologia Experimentalis et Applicata. 39 (1): 21–26. doi:10.1111/j.1570-7458.1985.tb03538.x. ISSN 0013-8703. S2CID 86713452.
  28. ^ a b c Dimock, M. B.; Renwick, J. A. A.; Radke, C. D.; Sachdev-gupta, K. (1991). "Chemical constituents of an unacceptable crucifer,Erysimum cheiranthoides, deter feeding byPieris rapae". Journal of Chemical Ecology. 17 (3): 525–533. doi:10.1007/bf00982123. ISSN 0098-0331. PMID 24258803. S2CID 32639023.
  29. ^ a b c Sachdev-Gupta, K.; Radke, Cd.; Renwick, J. A. A.; Dimock, M. B. (1993). "Cardenolides fromErysimum cheiranthoides: Feeding deterrents toPieris rapae larvae". Journal of Chemical Ecology. 19 (7): 1355–1369. doi:10.1007/bf00984881. ISSN 0098-0331. PMID 24249167. S2CID 258932.
  30. ^ Huang, Xinpei; Renwick, J. A. A.; Sachdev-Gupta, K. (1993). "A chemical basis for differential acceptance ofErysimum cheiranthoides by twoPieris species". Journal of Chemical Ecology. 19 (2): 195–210. doi:10.1007/bf00993689. ISSN 0098-0331. PMID 24248868. S2CID 29886753.
  31. ^ a b Huang, Xinpei; Renwick, J. A. A. (1993). "Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents". Entomologia Experimentalis et Applicata. 68 (1): 59–69. doi:10.1111/j.1570-7458.1993.tb01689.x. ISSN 0013-8703. S2CID 84979013.
  32. ^ Renwick, J. A. A.; Radke, C. D.; Sachdev-Gupta, K. (1989). "Chemical constituents ofErysimum cheiranthoides deterring oviposition by the cabbage butterfly,Pieris rapae". Journal of Chemical Ecology. 15 (8): 2161–2169. doi:10.1007/bf01014106. ISSN 0098-0331. PMID 24272377. S2CID 20866270.
  33. ^ STÄDLER, ERICH; RENWICK, J. A. A.; RADKE, CELIA D.; SACHDEV-GUPTA, KUSUM (1995). "Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rape". Physiological Entomology. 20 (2): 175–187. doi:10.1111/j.1365-3032.1995.tb00814.x. ISSN 0307-6962. S2CID 86576260.
  34. ^ Rayor, Linda S.; Mooney, Larissa J.; Renwick, J. Alan (2007). "Predatory Behavior of Polistes dominulus Wasps in Response to Cardenolides and Glucosinolates in Pieris napi Caterpillars". Journal of Chemical Ecology. 33 (6): 1177–1185. doi:10.1007/s10886-007-9283-4. ISSN 0098-0331. PMID 17453324. S2CID 25675444.
  35. ^ Munkert, Jennifer; Bauer, Peter; Burda, Edyta; Müller-Uri, Frieder; Kreis, Wolfgang (2011). "Progesterone 5β-reductase of Erysimum crepidifolium: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant protein". Phytochemistry. 72 (14–15): 1710–1717. doi:10.1016/j.phytochem.2011.06.007. PMID 21767854.
  36. ^ a b c Züst, Tobias; Mirzaei, Mahdieh; Jander, Georg (2018). "Erysimum cheiranthoides, an ecological research system with potential as a genetic and genomic model for studying cardiac glycoside biosynthesis". Phytochemistry Reviews. 17 (6): 1239. doi:10.1007/s11101-018-9562-4. S2CID 53857970.
  37. ^ Bainard, Jillian D.; Bainard, Luke D.; Henry, Thomas A.; Fazekas, Aron J.; Newmaster, Steven G. (2012). "A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits". New Phytologist. 196 (4): 1240–50. doi:10.1111/j.1469-8137.2012.04370.x. PMID 23078229.
  38. ^ "Erysimum Genome Site". September 17, 2019.
  39. ^ Züst, Tobias; Strickler, Susan R; Powell, Adrian F; Mabry, Makenzie E; An, Hong; Mirzaei, Mahdieh; York, Thomas; Holland, Cynthia K; Kumar, Pavan; Erb, Matthias; Petschenka, Georg; Gómez, José-María; Perfectti, Francsco; Müller, Caroline; Pires, J Chris; Mueller, Lukas; Jander, Georg (2020-04-07). "Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)". eLife. 9: e51712. doi:10.7554/eLife.51712. ISSN 2050-084X. PMC 7180059. PMID 32252891.
  40. ^ Mirzaei, Mahdieh; Züst, Tobias; Younkin, Gordon C.; Hastings, Amy P.; Alani, Martin L.; Agrawal, Anurag A.; Jander, Georg (2020). "Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores". Journal of Chemical Ecology. 46 (11–12): 1131–1143. doi:10.1007/s10886-020-01225-y. ISSN 0098-0331. PMID 33180277.
  41. ^ Withering, William (2014), "AN ACCOUNT OF THE INTRODUCTION of FOXGLOVE INTO MODERN PRACTICE", An Account of the Foxglove, and Some of Its Medical Uses, Cambridge University Press, pp. 1–10, doi:10.1017/cbo9781107706132.004, ISBN 9781107706132
  42. ^ Fürst, Robert; Zündorf, Ilse; Dingermann, Theo (2017). "New Knowledge About Old Drugs: The Anti-Inflammatory Properties of Cardiac Glycosides". Planta Medica. 83 (12/13): 977–984. doi:10.1055/s-0043-105390. ISSN 0032-0943. PMID 28297727.
  43. ^ Gurel, Ekrem; Karvar, Serhan; Yucesan, Buhara; Eker, Ismail; Sameeullah, Muhammad (2018). "An Overview of Cardenolides in Digitalis - More Than a Cardiotonic Compound". Current Pharmaceutical Design. 23 (34): 5104–5114. doi:10.2174/1381612823666170825125426. ISSN 1381-6128. PMID 28847302.
  44. ^ Kreis, Wolfgang (2017). "The Foxgloves (Digitalis) Revisited". Planta Medica. 83 (12/13): 962–976. doi:10.1055/s-0043-111240. ISSN 0032-0943. PMID 28561136.
  45. ^ Schneider, Naira; Cerella, Claudia; Simões, Cláudia Maria Oliveira; Diederich, Marc (2017). "Anticancer and Immunogenic Properties of Cardiac Glycosides". Molecules. 22 (11): 1932. doi:10.3390/molecules22111932. ISSN 1420-3049. PMC 6150164. PMID 29117117.
  46. ^ Patel, Seema (2016). "Plant-derived cardiac glycosides: Role in heart ailments and cancer management". Biomedicine & Pharmacotherapy. 84: 1036–1041. doi:10.1016/j.biopha.2016.10.030. ISSN 0753-3322. PMID 27780131.
  47. ^ Zhu, YC (1989). Plantae medicinales Chinae boreali-orientalis. Harbin: Heilongjiang Science and Technology Publishing House.

External links